The Permian--Triassic Extinction Event

A look back 250 million years ago when a massive volcanic eruption, (in what is now Siberia), spewed lava one mile thick over an area the size of Texas; caused intense climatic change that killed 95% of the life on the planet and paved the way for the next dominant species -- the dinosaurs.

The Permian--Triassic (P--Tr) extinction event, informally known as the Great Dying, was an extinction event that occurred 252.28 Ma (million years) ago, forming the boundary between the Permian and Triassic geologic periods, as well as the Paleozoic and Mesozoic eras. It is the Earth's most severe known extinction event, with up to 96% of all marine species and 70% of terrestrial vertebrate species becoming extinct. It is the only known mass extinction of insects. Some 57% of all families and 83% of all genera became extinct. Because so much biodiversity was lost, the recovery of life on Earth took significantly longer than after any other extinction event, possibly up to 10 million years.

Suggested mechanisms for the latter include large or multiple bolide impact events, increased volcanism, coal/gas fires and explosions from the Siberian Traps, and sudden release of methane clathrate from the sea floor; gradual changes include sea-level change, anoxia, increasing aridity, and a shift in ocean circulation driven by climate change.

The final stages of the Permian had two flood basalt events. A small one, Emeishan Traps in China, occurred at the same time as the end-Guadalupian extinction pulse, in an area close to the equator at the time. The flood basalt eruptions that produced the Siberian Traps constituted one of the largest known volcanic events on Earth and covered over 2,000,000 square kilometres (770,000 sq mi) with lava. The Siberian Traps eruptions were formerly thought to have lasted for millions of years, but recent research dates them to 251.2 ± 0.3 Ma — immediately before the end of the Permian.

The Emeishan and Siberian Traps eruptions may have caused dust clouds and acid aerosols—which would have blocked out sunlight and thus disrupted photosynthesis both on land and in the photic zone of the ocean, causing food chains to collapse. These eruptions may also have caused acid rain when the aerosols washed out of the atmosphere. This may have killed land plants and molluscs and planktonic organisms which had calcium carbonate shells. The eruptions would also have emitted carbon dioxide, causing global warming. When all of the dust clouds and aerosols washed out of the atmosphere, the excess carbon dioxide would have remained and the warming would have proceeded without any mitigating effects.

The Siberian Traps had unusual features that made them even more dangerous. Pure flood basalts produce a lot of runny lava and do not hurl debris into the atmosphere. It appears, however, that 20% of the output of the Siberian Traps eruptions was pyroclastic, i.e. consisted of ash and other debris thrown high into the atmosphere, increasing the short-term cooling effect. The basalt lava erupted or intruded into carbonate rocks and into sediments that were in the process of forming large coal beds, both of which would have emitted large amounts of carbon dioxide, leading to stronger global warming after the dust and aerosols settled.

There is doubt, however, about whether these eruptions were enough on their own to cause a mass extinction as severe as the end-Permian. Equatorial eruptions are necessary to produce sufficient dust and aerosols to affect life worldwide, whereas the much larger Siberian Traps eruptions were inside or near the Arctic Circle. Furthermore, if the Siberian Traps eruptions occurred within a period of 200,000 years, the atmosphere's carbon dioxide content would have doubled. Recent climate models suggest such a rise in CO2 would have raised global temperatures by 1.5 to 4.5°C (2.7 to 8.1°F), which is unlikely to cause a catastrophe as great as the P--Tr extinction.

In January 2011, a team led by Stephen Grasby of the Geological Survey of Canada—Calgary, reported evidence that volcanism caused massive coal beds to ignite, possibly releasing more than 3 trillion tons of carbon. The team found ash deposits in deep rock layers near what is now Buchanan Lake. According to their article, "... coal ash dispersed by the explosive Siberian Trap eruption would be expected to have an associated release of toxic elements in impacted water bodies where fly ash slurries developed ...", and "Mafic megascale eruptions are long-lived events that would allow significant build-up of global ash clouds". In a statement, Grasby said, "In addition to these volcanoes causing fires through coal, the ash it spewed was highly toxic and was released in the land and water, potentially contributing to the worst extinction event in earth history."